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Abstract

Let f be a conformal map of the unit disk D onto a domain bounded by a curve
C, which is of class C3,δ, except for a finite number of corners. In this paper we derive
a representation formula of the Schwarzian derivative Sf , expressed in terms of the
integral of the arclength derivative of the curvature of C and a sum of polar terms
corresponding to the vertices.

1. Introduction

Let f be a locally univalent analytic map defined on some open set, and let

Sf(z) = (
f ′′

f ′
)′ − 1

2
(
f ′′

f ′
)2

be its Schwarzian derivative. The role of this operator in connection with the global univa-
lence of f in the domain and quaisconformal extensions to C has been studied extensively
and is well known. On the other hand, at a local scale, the Schwarzian derivative determines
the way the mapping f distorts geodesic curvature, in particular, to what extent curves of
constant curvature are preserved under the mapping. To be precise, let z = z(t) be an
arclength parametrized curve contained in the domain of f , and let w(t) = f(z(t)) be the
image curve. The curvatures are given by k(t) = d

dt
arg{z′(t)} and

κ(s) =
d

ds
arg{w′(t)} =

1

|f ′|

(
Im{(f

′′

f ′
)z′}+ k(t)

)
. (1.1)

Here s denotes the arclength parameter of the image curve and all derivatives of f are
evaluated at z(t). Further differentiation yields the important relation

dκ

ds
=

1

|f ′|2

(
Im{(Sf)(z′)2}+

dk

dt

)
. (1.2)
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It follows, for example, that a given circle or line γ will be mapped onto a curve of the same
type provided the quantity (Sf)(z′)2 is real along γ.

Let f be a conformal map of the unit disc D onto the Jordan domain Ω. First let ∂Ω be
very smooth and let z(t) = eit. From (1.1) and (1.2) we obtain that

κ =
1

|f ′|
Re{1 + z

f ′′

f ′
} ,

and
dκ

ds
= − 1

|f ′|2
Im{z2Sf} .

It follows then from Schwarz’s formula that

z2Sf(z) =
1

2πi

∫ 2π

0

eit + z

eit − z
|f ′(eit)|2(dκ

ds
)dt . (1.3)

One deduces, for instance, that a conformal mapping of the disc onto a domain bounded by
a circle must be a Möbius transformation. On the other hand, if ∂Ω consists of circular arcs
forming interior angles αkπ at the vertices wk = f(zk) then [Ne52, p. 201]

z2Sf(z) =
n∑
k=1

(
1− α2

k

2

zzk
(z − zk)2

+ irk
z + zk
z − zk

)
+ c ,

with real rk.
The purpose of the present paper is to derive a similar integral formula for the Schwarzian

of a conformal map f onto a domain bounded by a curve that is sufficiently smooth except for
a finite number of corners. As it turns out, arbitrary interior angles will not be allowed, for
then f ′ will fail to belong to the Hardy space H2. The formula will incorporate, in addition
to the integral, a sum of polar terms at the points on ∂D corresponding to the vertices in
the image.

2. Main Result

Let C be a Jordan curve in C, let w1, . . . , wn = w0 be points on C in cyclic order, and let
Γk be the closed arc between wk−1 and wk, k = 1, . . . , n. We will assume that the arcs Γk are
C3,δ for some δ > 0, and that the curve C forms at wk an interior angle of παk, 0 ≤ αk ≤ 2.
Then the geodesic curvature κ(s) and its arclength derivative κ′(s) exist on each open arc
and have one-sided limits at each vertex. Let f be a conformal map of D onto Ω, the interior
domain bounded by C, and let zk = f−1(wk). It follows from [Po92, Thm.3.6] that f ′′′(z) is
continuous and f ′(z) 6= 0 for z ∈ D \ {z1, . . . , zn}.

For z(t) = eit let s(t) be again the arclength parameter on C, and write

λ(z) =
dκ

ds
(s(t)) =

1

|f ′(z)|
dκ

dt
.

Then λ(z) is continuous and bounded on ∂D \ {z1, . . . , zn}.
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Theorem: If 1
2
< αk ≤ 2 for k = 1, . . . , n then, for z ∈ D

z2Sf(z) =
n∑
k=1

(
1− α2

k

2

zkz

(z − zk)2
+ irk

z + zk
z − zk

)
+

1

2πi

∫
|ζ|=1

ζ + z

ζ − z
|f ′(ζ)|2λ(ζ)|dζ| . (2.1)

Here f ′ ∈ H2 and rk ∈ R.

Remark: If there is some αk ≤ 1
2

then f ′ /∈ H2 and the integral will not converge unless
λ(z) tends to zero sufficiently rapidly as z → zk. It is also interesting to observe that if all
the arcs Γk are pieces of circles or straight lines, then Sf(z) is meromorphic with poles at
the points zk.

In the proof we will use the following Phragmen-Lindelöf type lemma:

Lemma: Let h : D → C be analytic and continuous on D\{ζ}, for some ζ ∈ ∂D. Suppose
that for constants a, b,M1,M2:

(i) |h(z)| ≤ M1

(1− |z|)a
, z ∈ D ,

(ii) |h(z)| ≤ M2

|z − ζ|b
, |z| = 1 , z 6= ζ .

Then

|h(z)| ≤ M2

|z − ζ|b
, z ∈ D .

Proof: Without loss of generality we may assume that ζ = 1. Let ε > 0 be fixed and
consider the function g(z) = (z − ζ)bh(z)q(z), where

q(z) = exp

(
−ε
√

1 + z

1− z

)
.

Since Re
√

1+z
1−z > 0 it follows that lim supz→w |g(z)| ≤M2 if w ∈ ∂D\{1}. On the other hand,

lim supz→1 |g(z)| = 0 because of part (i) and the choice of the function q(z) . We conclude
from the classical Lindelöf maximum principle that |g(z)| ≤ M2 for all z ∈ D. The lemma
now follows by letting ε→ 0.

Proof of the Theorem: The proof is long and will be divided into several parts. First
we will determine the asymptotic behavior of some functions related to f near the points
zk. This was done in greater generality by Wigley [Wi65]. However, we need more detailed
information about the coefficients.

Part 1. Let k be fixed and suppose αk 6= 1, 2. Then the circles of curvature of Γk and
Γk+1 at wk have a second point of intersection, w∗k. Let us assume first that w∗k 6= ∞; the
other case is simpler. Let Ωk be a subdomain of Ω such that ∂Ωk consists of arcs of Γk and
Γk+1 containing wk, and a third arc of class C3,δ of high contact with Γk and Γk+1. We may
assume also that w∗k /∈ Ωk, and that Ωk is limited to a small neighborhood of wk.
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The function

ψk(w) =

(
ak
w − wk
w − w∗k

) 1
αk

(2.2)

is analytic and injective for w ∈ Ωk, and the image ψk(∂Ωk) is a Jordan curve. We may choose
the parameter ak such that the image Ck of ∂Ωk under ψk(w)αk = ak(w−wk)/(w−w∗k) has
tangents in the directions e±iπαk/2 at 0. Because of the choice of the Möbius transformation
in the definition of ψk, the curvatures of Ck are 0 at 0.

If w∗k =∞ then both circles of curvature are straight lines and the one-sided curvatures
of C at wk are 0. Then it suffices to consider ak(w − wk) as the Möbius transformation in
the definition (2.2) of ψk. In either case, Ck admits parametric representations in the form

u(t) = e±iπαk/2t+O(t3)

near the origin. It follows that

u(t)1/αk = ±it1/αkω(t) ,

where ω(t) = 1 + O(t2). Let τ = t1/αk , that is, t = ταk . Then ψk(∂Ωk) near 0 can be
represented as

v(τ) = ±iτω(ταk) ,

and therefore
±iv′(τ) = ω(ταk) + αkτ

αkω′(ταk) = 1 +O(τ 2αk) ,

±iv′′(τ) = αk(1 + αk)τ
αk−1ω′(ταk) + α2

kτ
2αk−1ω′′(ταk) = O(τ 2αk−1) . (2.3)

One further differentiation for τ 6= 0 shows that

Sv(τ) = O(τ 2αk−2) +O(τ 4αk−2) = O(τ 2αk−2) , τ → 0 . (2.4)

Let ϕk be a conformal mapping of D onto f−1(Ωk) ⊂ D such that ϕk(1) = zk. Then

fk = ψk ◦ f ◦ ϕk (2.5)

is a conformal mapping of D onto ψk(Ω). We want to apply the lemma to h(z) = Sfk(z)
with ζ = 1. Because ∂fk(D) is of class C3,δ except at fk(1), it follows that h(z) is continuous
on D\{1}. Furthermore, in light of the univalence of fk, h(z) satisfies condition (i) of the
lemma with M1 = 6 and a = 2. On the other hand, the mapping fk ◦ ϕ−1

k along the
boundary ∂f−1(Ωk) is of class C3,δ, except at zk. It follows that S(fk ◦ϕ−1

k ) is continuous on
∂f−1(Ωk)\{zk}, and equation (2.4) implies that near zk, |S(fk ◦ϕ−1

k )(z)| is O(|z − zk|2αk−2).
Here we have used that τ ∼ |z − zk|. Since, by the reflection principle, the mapping ϕk is
analytic at 1 = ϕ−1

k (zk), it follows that h(z) = Sfk(z) satisfies condition (ii) of the lemma
for some M2 and b = 2− 2αk. Because 2− 2αk < 1, the conclusion of the lemma implies the
key fact that

Sfk ∈ H1 . (2.6)

From (2.2) we deduce that ψ−1
k (w) = σk(w

αk), with σk Möbius, hence

Sψ−1
k (w) =

1− α2
k

2

1

w2
. (2.7)
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Part 2. Let again k be fixed, and suppose that αk = 2. Then the circles of curvature are
tangent and we now define

ψk(w) = (ak(w − wk))
1
2 . (2.8)

For ak properly chosen, the image Ck of ∂Ωk under ak(w − wk) admits, near the origin, a
representation of the form

u(t) = −t+O(t2) ,

and it follows that
u(t)

1
2 = ±it

1
2ω(t) ,

where ω(t) = 1 +O(t) only. Let τ = t
1
2 , that is, t = τ 2. Then Ck can be represented as

v(τ) = ±iτω(τ 2) ,

and thus
∓iv′′(τ) = 4τω′(τ 2) + 4τ 3ω′′(τ 2) = O(τ) . (2.9)

Thus Sv(τ) is bounded near τ = 0, and we conclude in this case that Sfk is actually bounded
in D. Hence (2.6) holds. Note also that (2.7) is also valid in this case.

Part 3. Suppose now that αk = 1 for some k. The curve C then has a tangent at wk but
may have different one-sided curvatures κ+, κ−. We may assume that wk = 0 and that the
tangent line is vertical. The curve C near 0 admits a parametrization of the form

u±(t) = ±it+ µ±(t) , (2.10)

where µ± are real valued functions of class C3,δ and

µ±(t) =
1

2
κ±t2 +O(t3) , t→ 0 . (2.11)

This time, let

ψk(w) =
w

1− (ib logw + c)w
= w + (ib logw + c)w2 +O(w3 log2w) ,

where b = bk, c = ck are real constants to be chosen later. Then

ψk(u
±(t)) = ±it+O(t2 log t) , t→ 0

and
d

dt
ψk(u

±(t)) =
du±

dt
+ (2ib log u± + 2c+ ib)u±

du±

dt
,

d2

dt2
ψk(u

±(t)) =
d2u±

dt2
+ (2ib log u±+ 2c+ ib)u±

d2u±

dt2
+ (2ib log u±+ 2c+ 3ib)(

du±

dt
)2 . (2.12)

It follows from (2.10) and (2.11) that, as t→ 0,

du±

dt
= ±i+

dµ±

dt
= ±i+ κ±t+O(t2) ,
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and
d2u±

dt2
=
d2µ±

dt2
= κ± +O(t) .

We therefore deduce from (2.12) that

d2

dt2
Re{ψk(u±(t))} = κ± ∓ πb− 2c+O(t log t) , (2.13)

because log u±(t) = ±iπ
2

+ log(t∓ iµ±(t)) . We may choose now b, c such that κ+−πb− 2c =
κ− + πb− 2c = 0. With this, the parameter τ is defined by

τ = Im{ψk(u±(t))} , −τ0 < τ < τ0 .

Then τ = ±t + O(t2 log t), hence t = |τ | + O(τ 2 log τ) as τ → 0. With this, (2.13) and the
choice of b, c, we obtain that

d2

dτ 2
Re{ψk(u±(τ))} = O(τ log τ) , τ → 0 . (2.14)

Thus the curve Ck has vertical tangent and zero curvature at the origin, and admits a
parametrization v(τ) with the property that Sv(τ) = O(log τ) as τ → 0. Once more we
conclude that Sfk satisfies (2.6).

As in (2.7), we will need Sψ−1
k in Part 4 of this proof. Let

h(w) =
1

ψk(w)
=

1

w
− ib logw + c ,

so that h′(w) = −1/w2 − ib/w and

h′′

h′
(w) = − 1

w

2 + ibw

1 + ibw
= − 2

w
+ ib+O(w) ,

hence

Sh(w) = Sψk(w) =
2ib

w
+O(1) .

Since ψ′k(w)2(Sψ−1
k )(ψk(w)) + Sψk(w) = 0 we obtain

(Sψ−1
k )(ψk(w)) = −2ib

w

(
1

w
− ib logw + c

)4

(
− 1

w2
− ib

w

)2

= −2ib

w

(
1− 4ibw logw + (4c− 2ib)w +O(w2 log2w)

)
= −2ib

(
1

ψk(w)
− 3ib logψk(w) +O(1)

)
.
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With this,

Sψ−1
k (w) = −2ib

w
+O(logw) . (2.15)

Part 4. Finally, we put together the various individual cases for k = 1, . . . , n. We consider
the functions

χk = ϕ−1
k : Ωk → D , gk = ψk ◦ f = fk ◦ χk : Ωk → C .

If αk 6= 1 then, by (2.7), we have in Ωk that

Sf = S(ψ−1
k ◦ gk) =

1− α2
k

2

(
g′k
gk

)2

+ Sgk , (2.16)

where Sgk = (χ′k)
2(Sfk) ◦ χk + Sχk has bounded integral over {|z| = r} ∩ ∂Ωk for r near to

1 because Sfk ∈ H1 by (2.6).
We see from (2.3) and (2.9) that ∂fk(D) belongs to the class C2,βk , where βk = 2αk−1 > 0

if αk < 1 and βk is any number with 0 < βk < 1 if αk > 1. Hence f ′′k satisfies a Hölder
condition with exponent βk = 2αk − 1 > 0 by the Kellog-Warschawski theorem [Po92,
Thm.3.6]. Since χk is conformal near zk, we conclude that gk has an expansion of the form

gk(z) = dk(z − zk) + ck(z − zk)2 +O((z − zk)2+βk) , z → zk , (2.17)

where dk 6= 0. By the Hölder continuity above, corresponding differentiated expansions hold
also for g′k and g′′k , and it follows that

1 + z
g′′k(z)

g′k(z)
→ 1 +

2ckzk
dk

, z → zk ,

and because the curvature of Ck is zero at 0 we conclude that

Re{1 +
2ckzk
dk
} = 0 .

Thus

1 +
2ckzk
dk

= 2iek , ek ∈ R .

Further calculations give that(
z
g′k
gk

)2

=
z2

(z − zk)2
+

2ck
dk

z2

z − zk
+O((z − zk)βk−1)

=
zkz

(z − zk)2
+ iek

z + zk
z − zk

+O((z − zk)βk−1) . (2.18)

It follows from (2.16) that

z2Sf(z)− 1− α2
k

2

zkz

(z − zk)2
− irk

z + zk
z − zk

− z2Sgk(z) = O((z − zk)βk−1) ,
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for some rk ∈ R, which implies that

z2Sf(z)− 1− α2
k

2

zkz

(z − zk)2
− irk

z + zk
z − zk

has bounded integral over {|z| = r} ∩ ∂Ωk for r close to 1 because βk > 0. Observe that if

|z| = 1, then

√
zkz

z − zk
∈ iR and hence

Im

{
1− α2

k

2

zkz

(z − zk)2
+ irk

z + zk
z − zk

}
= 0 , z ∈ ∂D . (2.19)

Suppose now that αk = 1. By (2.14), we conclude once more that the function fk satisfies
a Hölder condition for some (any) exponent βk > 0, and as before, the function gk admits
the expansion (2.17). From equation (2.15) we have that

Sf = S(ψ−1
k ◦ gk) = −2ibk

gk
(g′k)

2 + Sgk +O(log(z − zk)) , z → zk ,

and hence

z2Sf(z) = irk
z + zk
z − zk

+ z2Sgk(z) +O(log(z − zk)) ,

where we have set rk = −bkzkg′k(zk), which is real because the tangent to Ck at 0 = gk(zk) is
vertical. As before, for r close to 1 Sgk has bounded integral over {|z| = r} ∩ ∂Ωk, therefore
so does

z2Sf(z)− irk
z + zk
z − zk

.

If z ∈ ∂D then (2.19) holds with αk = 1. We define the function R(z) by

R(z) =
n∑
k=1

(
1− α2

k

2

zkz

(z − zk)2
+ irk

z + zk
z − zk

)
. (2.20)

By construction, if r is near to 1 then z2Sf(z) − R(z) has bounded integral over {|z| =
r} ∩ ∂Ωk for each k, and since C\ ∪ ∂Ωk belongs to C3,δ in ∂D\{z1, · · · , zn}, we conclude
that z2Sf(z)−R(z) is in H1. It follows that for z ∈ D

z2Sf(z)−R(z) =
1

2πi

∫
|ζ|=1

ζ + z

ζ − z
Im
{
ζ2Sf(ζ)−R(ζ)

}
|dζ| .

This implies (2.1) because Im{R(ζ)} = 0 by (2.19) and (2.20).
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