An integral representation formula of the Schwarzian derivative

Martin Chuaqui^{*} Christian Pommerenke

Abstract

Let f be a conformal map of the unit disk \mathbb{D} onto a domain bounded by a curve C, which is of class $C^{3,\delta}$, except for a finite number of corners. In this paper we derive a representation formula of the Schwarzian derivative Sf, expressed in terms of the integral of the arclength derivative of the curvature of C and a sum of polar terms corresponding to the vertices.

1. Introduction

Let f be a locally univalent analytic map defined on some open set, and let

$$Sf(z) = (\frac{f''}{f'})' - \frac{1}{2}(\frac{f''}{f'})^2$$

be its Schwarzian derivative. The role of this operator in connection with the global univalence of f in the domain and quaisconformal extensions to \mathbb{C} has been studied extensively and is well known. On the other hand, at a local scale, the Schwarzian derivative determines the way the mapping f distorts geodesic curvature, in particular, to what extent curves of constant curvature are preserved under the mapping. To be precise, let z = z(t) be an arclength parametrized curve contained in the domain of f, and let w(t) = f(z(t)) be the image curve. The curvatures are given by $k(t) = \frac{d}{dt} \arg\{z'(t)\}$ and

$$\kappa(s) = \frac{d}{ds} \arg\{w'(t)\} = \frac{1}{|f'|} \left(\operatorname{Im}\{(\frac{f''}{f'})z'\} + k(t) \right) \,. \tag{1.1}$$

Here s denotes the arclength parameter of the image curve and all derivatives of f are evaluated at z(t). Further differentiation yields the important relation

$$\frac{d\kappa}{ds} = \frac{1}{|f'|^2} \left(\text{Im}\{(Sf)(z')^2\} + \frac{dk}{dt} \right) \,. \tag{1.2}$$

^{*}The author was partially supported by Fondecyt Grant # 1000629.

Key words: Schwarzian derivative, curvature, smooth curve, corners.

²⁰⁰⁰ AMS Subject Classification #: Primary 30E20, Secondary 30C20, 30C35.

It follows, for example, that a given circle or line γ will be mapped onto a curve of the same type provided the quantity $(Sf)(z')^2$ is real along γ .

Let f be a conformal map of the unit disc \mathbb{D} onto the Jordan domain Ω . First let $\partial \Omega$ be very smooth and let $z(t) = e^{it}$. From (1.1) and (1.2) we obtain that

$$\kappa = \frac{1}{|f'|} \operatorname{Re}\{1 + z\frac{f''}{f'}\},\,$$

and

$$\frac{d\kappa}{ds} = -\frac{1}{|f'|^2} \operatorname{Im}\{z^2 S f\}$$

It follows then from Schwarz's formula that

$$z^{2}Sf(z) = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{e^{it} + z}{e^{it} - z} |f'(e^{it})|^{2} (\frac{d\kappa}{ds}) dt \,.$$
(1.3)

One deduces, for instance, that a conformal mapping of the disc onto a domain bounded by a circle must be a Möbius transformation. On the other hand, if $\partial\Omega$ consists of circular arcs forming interior angles $\alpha_k \pi$ at the vertices $w_k = f(z_k)$ then [Ne52, p. 201]

$$z^{2}Sf(z) = \sum_{k=1}^{n} \left(\frac{1 - \alpha_{k}^{2}}{2} \frac{zz_{k}}{(z - z_{k})^{2}} + ir_{k} \frac{z + z_{k}}{z - z_{k}} \right) + c,$$

with real r_k .

The purpose of the present paper is to derive a similar integral formula for the Schwarzian of a conformal map f onto a domain bounded by a curve that is sufficiently smooth except for a finite number of corners. As it turns out, arbitrary interior angles will not be allowed, for then f' will fail to belong to the Hardy space H^2 . The formula will incorporate, in addition to the integral, a sum of polar terms at the points on $\partial \mathbb{D}$ corresponding to the vertices in the image.

2. Main Result

Let C be a Jordan curve in \mathbb{C} , let $w_1, \ldots, w_n = w_0$ be points on C in cyclic order, and let Γ_k be the closed arc between w_{k-1} and $w_k, k = 1, \ldots, n$. We will assume that the arcs Γ_k are $C^{3,\delta}$ for some $\delta > 0$, and that the curve C forms at w_k an interior angle of $\pi \alpha_k, 0 \leq \alpha_k \leq 2$. Then the geodesic curvature $\kappa(s)$ and its arclength derivative $\kappa'(s)$ exist on each open arc and have one-sided limits at each vertex. Let f be a conformal map of \mathbb{D} onto Ω , the interior domain bounded by C, and let $z_k = f^{-1}(w_k)$. It follows from [Po92, Thm.3.6] that f'''(z) is continuous and $f'(z) \neq 0$ for $z \in \overline{\mathbb{D}} \setminus \{z_1, \ldots, z_n\}$.

For $z(t) = e^{it}$ let s(t) be again the arclength parameter on C, and write

$$\lambda(z) = \frac{d\kappa}{ds}(s(t)) = \frac{1}{|f'(z)|} \frac{d\kappa}{dt}$$

Then $\lambda(z)$ is continuous and bounded on $\partial \mathbb{D} \setminus \{z_1, \ldots, z_n\}$.

Theorem: If $\frac{1}{2} < \alpha_k \leq 2$ for k = 1, ..., n then, for $z \in \mathbb{D}$

$$z^{2}Sf(z) = \sum_{k=1}^{n} \left(\frac{1 - \alpha_{k}^{2}}{2} \frac{z_{k}z}{(z - z_{k})^{2}} + ir_{k} \frac{z + z_{k}}{z - z_{k}} \right) + \frac{1}{2\pi i} \int_{|\zeta| = 1} \frac{\zeta + z}{\zeta - z} |f'(\zeta)|^{2} \lambda(\zeta) |d\zeta| \,. \tag{2.1}$$

Here $f' \in H^2$ and $r_k \in \mathbb{R}$.

Remark: If there is some $\alpha_k \leq \frac{1}{2}$ then $f' \notin H^2$ and the integral will not converge unless $\lambda(z)$ tends to zero sufficiently rapidly as $z \to z_k$. It is also interesting to observe that if all the arcs Γ_k are pieces of circles or straight lines, then Sf(z) is meromorphic with poles at the points z_k .

In the proof we will use the following Phragmen-Lindelöf type lemma:

Lemma: Let $h : \mathbb{D} \to \mathbb{C}$ be analytic and continuous on $\overline{\mathbb{D}} \setminus \{\zeta\}$, for some $\zeta \in \partial \mathbb{D}$. Suppose that for constants a, b, M_1, M_2 :

(i)
$$|h(z)| \le \frac{M_1}{(1-|z|)^a}, z \in \mathbb{D},$$

(*ii*)
$$|h(z)| \le \frac{M_2}{|z-\zeta|^b}, |z| = 1, z \ne \zeta$$

Then

$$|h(z)| \leq \frac{M_2}{|z-\zeta|^b}, z \in \mathbb{D}.$$

Proof: Without loss of generality we may assume that $\zeta = 1$. Let $\epsilon > 0$ be fixed and consider the function $g(z) = (z - \zeta)^b h(z)q(z)$, where

$$q(z) = \exp\left(-\epsilon \sqrt{\frac{1+z}{1-z}}\right)$$
.

Since $\operatorname{Re}\sqrt{\frac{1+z}{1-z}} > 0$ it follows that $\limsup_{z \to w} |g(z)| \le M_2$ if $w \in \partial \mathbb{D} \setminus \{1\}$. On the other hand, $\limsup_{z \to 1} |g(z)| = 0$ because of part (i) and the choice of the function q(z). We conclude from the classical Lindelöf maximum principle that $|g(z)| \le M_2$ for all $z \in \mathbb{D}$. The lemma now follows by letting $\epsilon \to 0$.

Proof of the Theorem: The proof is long and will be divided into several parts. First we will determine the asymptotic behavior of some functions related to f near the points z_k . This was done in greater generality by Wigley [Wi65]. However, we need more detailed information about the coefficients.

<u>Part 1.</u> Let k be fixed and suppose $\alpha_k \neq 1, 2$. Then the circles of curvature of Γ_k and Γ_{k+1} at w_k have a second point of intersection, w_k^* . Let us assume first that $w_k^* \neq \infty$; the other case is simpler. Let Ω_k be a subdomain of Ω such that $\partial \Omega_k$ consists of arcs of Γ_k and Γ_{k+1} containing w_k , and a third arc of class $C^{3,\delta}$ of high contact with Γ_k and Γ_{k+1} . We may assume also that $w_k^* \notin \overline{\Omega_k}$, and that Ω_k is limited to a small neighborhood of w_k .

The function

$$\psi_k(w) = \left(a_k \frac{w - w_k}{w - w_k^*}\right)^{\frac{1}{\alpha_k}} \tag{2.2}$$

is analytic and injective for $w \in \Omega_k$, and the image $\psi_k(\partial \Omega_k)$ is a Jordan curve. We may choose the parameter a_k such that the image C_k of $\partial \Omega_k$ under $\psi_k(w)^{\alpha_k} = a_k(w - w_k)/(w - w_k^*)$ has tangents in the directions $e^{\pm i\pi\alpha_k/2}$ at 0. Because of the choice of the Möbius transformation in the definition of ψ_k , the curvatures of C_k are 0 at 0.

If $w_k^* = \infty$ then both circles of curvature are straight lines and the one-sided curvatures of C at w_k are 0. Then it suffices to consider $a_k(w - w_k)$ as the Möbius transformation in the definition (2.2) of ψ_k . In either case, C_k admits parametric representations in the form

$$u(t) = e^{\pm i\pi\alpha_k/2}t + O(t^3)$$

near the origin. It follows that

$$u(t)^{1/\alpha_k} = \pm i t^{1/\alpha_k} \omega(t) \,,$$

where $\omega(t) = 1 + O(t^2)$. Let $\tau = t^{1/\alpha_k}$, that is, $t = \tau^{\alpha_k}$. Then $\psi_k(\partial \Omega_k)$ near 0 can be represented as

$$v(\tau) = \pm i\tau\omega(\tau^{\alpha_k})$$

and therefore

$$\pm iv'(\tau) = \omega(\tau^{\alpha_k}) + \alpha_k \tau^{\alpha_k} \omega'(\tau^{\alpha_k}) = 1 + O(\tau^{2\alpha_k}),$$

$$\pm iv''(\tau) = \alpha_k (1 + \alpha_k) \tau^{\alpha_k - 1} \omega'(\tau^{\alpha_k}) + \alpha_k^2 \tau^{2\alpha_k - 1} \omega''(\tau^{\alpha_k}) = O(\tau^{2\alpha_k - 1}).$$
(2.3)

One further differentiation for $\tau \neq 0$ shows that

$$Sv(\tau) = O(\tau^{2\alpha_k - 2}) + O(\tau^{4\alpha_k - 2}) = O(\tau^{2\alpha_k - 2}), \ \tau \to 0.$$
(2.4)

Let φ_k be a conformal mapping of \mathbb{D} onto $f^{-1}(\Omega_k) \subset \mathbb{D}$ such that $\varphi_k(1) = z_k$. Then

$$f_k = \psi_k \circ f \circ \varphi_k \tag{2.5}$$

is a conformal mapping of \mathbb{D} onto $\psi_k(\Omega)$. We want to apply the lemma to $h(z) = Sf_k(z)$ with $\zeta = 1$. Because $\partial f_k(\mathbb{D})$ is of class $C^{3,\delta}$ except at $f_k(1)$, it follows that h(z) is continuous on $\overline{\mathbb{D}} \setminus \{1\}$. Furthermore, in light of the univalence of f_k , h(z) satisfies condition (i) of the lemma with $M_1 = 6$ and a = 2. On the other hand, the mapping $f_k \circ \varphi_k^{-1}$ along the boundary $\partial f^{-1}(\Omega_k)$ is of class $C^{3,\delta}$, except at z_k . It follows that $S(f_k \circ \varphi_k^{-1})$ is continuous on $\partial f^{-1}(\Omega_k) \setminus \{z_k\}$, and equation (2.4) implies that near z_k , $|S(f_k \circ \varphi_k^{-1})(z)|$ is $O(|z - z_k|^{2\alpha_k - 2})$. Here we have used that $\tau \sim |z - z_k|$. Since, by the reflection principle, the mapping φ_k is analytic at $1 = \varphi_k^{-1}(z_k)$, it follows that $h(z) = Sf_k(z)$ satisfies condition (ii) of the lemma for some M_2 and $b = 2 - 2\alpha_k$. Because $2 - 2\alpha_k < 1$, the conclusion of the lemma implies the key fact that

$$Sf_k \in H^1. (2.6)$$

From (2.2) we deduce that $\psi_k^{-1}(w) = \sigma_k(w^{\alpha_k})$, with σ_k Möbius, hence

$$S\psi_k^{-1}(w) = \frac{1 - \alpha_k^2}{2} \frac{1}{w^2}.$$
(2.7)

<u>Part 2.</u> Let again k be fixed, and suppose that $\alpha_k = 2$. Then the circles of curvature are tangent and we now define

$$\psi_k(w) = (a_k(w - w_k))^{\frac{1}{2}} .$$
(2.8)

For a_k properly chosen, the image C_k of $\partial \Omega_k$ under $a_k(w - w_k)$ admits, near the origin, a representation of the form

$$u(t) = -t + O(t^2)$$

and it follows that

$$u(t)^{\frac{1}{2}} = \pm it^{\frac{1}{2}}\omega(t),$$

where $\omega(t) = 1 + O(t)$ only. Let $\tau = t^{\frac{1}{2}}$, that is, $t = \tau^2$. Then C_k can be represented as

$$v(\tau) = \pm i \tau \omega(\tau^2)$$

and thus

$$\mp i v''(\tau) = 4\tau \omega'(\tau^2) + 4\tau^3 \omega''(\tau^2) = O(\tau) \,. \tag{2.9}$$

Thus $Sv(\tau)$ is bounded near $\tau = 0$, and we conclude in this case that Sf_k is actually bounded in \mathbb{D} . Hence (2.6) holds. Note also that (2.7) is also valid in this case.

<u>Part 3.</u> Suppose now that $\alpha_k = 1$ for some k. The curve C then has a tangent at w_k but may have different one-sided curvatures κ^+, κ^- . We may assume that $w_k = 0$ and that the tangent line is vertical. The curve C near 0 admits a parametrization of the form

$$u^{\pm}(t) = \pm it + \mu^{\pm}(t), \qquad (2.10)$$

where μ^{\pm} are real valued functions of class $C^{3,\delta}$ and

$$\mu^{\pm}(t) = \frac{1}{2}\kappa^{\pm}t^2 + O(t^3) , t \to 0.$$
(2.11)

This time, let

$$\psi_k(w) = \frac{w}{1 - (ib\log w + c)w} = w + (ib\log w + c)w^2 + O(w^3\log^2 w),$$

where $b = b_k, c = c_k$ are real constants to be chosen later. Then

$$\psi_k(u^{\pm}(t)) = \pm it + O(t^2 \log t) , t \to 0$$

and

$$\frac{d}{dt}\psi_k(u^{\pm}(t)) = \frac{du^{\pm}}{dt} + (2ib\log u^{\pm} + 2c + ib)u^{\pm}\frac{du^{\pm}}{dt}$$

$$\frac{d^2}{dt^2}\psi_k(u^{\pm}(t)) = \frac{d^2u^{\pm}}{dt^2} + (2ib\log u^{\pm} + 2c + ib)u^{\pm}\frac{d^2u^{\pm}}{dt^2} + (2ib\log u^{\pm} + 2c + 3ib)(\frac{du^{\pm}}{dt})^2. \quad (2.12)$$

It follows from (2.10) and (2.11) that, as $t \to 0$,

$$\frac{du^{\pm}}{dt} = \pm i + \frac{d\mu^{\pm}}{dt} = \pm i + \kappa^{\pm} t + O(t^2) \,,$$

and

$$\frac{d^2 u^{\pm}}{dt^2} = \frac{d^2 \mu^{\pm}}{dt^2} = \kappa^{\pm} + O(t) \,.$$

We therefore deduce from (2.12) that

$$\frac{d^2}{dt^2} \operatorname{Re}\{\psi_k(u^{\pm}(t))\} = \kappa^{\pm} \mp \pi b - 2c + O(t\log t), \qquad (2.13)$$

because $\log u^{\pm}(t) = \pm i \frac{\pi}{2} + \log(t \mp i \mu^{\pm}(t))$. We may choose now b, c such that $\kappa^{+} - \pi b - 2c = \kappa^{-} + \pi b - 2c = 0$. With this, the parameter τ is defined by

$$\tau = \text{Im}\{\psi_k(u^{\pm}(t))\}, -\tau_0 < \tau < \tau_0,$$

Then $\tau = \pm t + O(t^2 \log t)$, hence $t = |\tau| + O(\tau^2 \log \tau)$ as $\tau \to 0$. With this, (2.13) and the choice of b, c, we obtain that

$$\frac{d^2}{d\tau^2} \operatorname{Re}\{\psi_k(u^{\pm}(\tau))\} = O(\tau \log \tau) , \tau \to 0.$$
(2.14)

Thus the curve C_k has vertical tangent and zero curvature at the origin, and admits a parametrization $v(\tau)$ with the property that $Sv(\tau) = O(\log \tau)$ as $\tau \to 0$. Once more we conclude that Sf_k satisfies (2.6).

As in (2.7), we will need $S\psi_k^{-1}$ in Part 4 of this proof. Let

$$h(w) = \frac{1}{\psi_k(w)} = \frac{1}{w} - ib\log w + c$$

so that $h'(w) = -1/w^2 - ib/w$ and

$$\frac{h''}{h'}(w) = -\frac{1}{w} \frac{2 + ibw}{1 + ibw} = -\frac{2}{w} + ib + O(w) \,,$$

hence

$$Sh(w) = S\psi_k(w) = \frac{2ib}{w} + O(1).$$

Since $\psi'_k(w)^2(S\psi_k^{-1})(\psi_k(w)) + S\psi_k(w) = 0$ we obtain

$$(S\psi_k^{-1})(\psi_k(w)) = -\frac{2ib}{w} \frac{\left(\frac{1}{w} - ib\log w + c\right)^4}{\left(-\frac{1}{w^2} - \frac{ib}{w}\right)^2}$$

$$= -\frac{2ib}{w} \left(1 - 4ibw \log w + (4c - 2ib)w + O(w^2 \log^2 w) \right)$$
$$= -2ib \left(\frac{1}{\psi_k(w)} - 3ib \log \psi_k(w) + O(1) \right).$$

With this,

$$S\psi_k^{-1}(w) = -\frac{2ib}{w} + O(\log w).$$
(2.15)

<u>Part 4.</u> Finally, we put together the various individual cases for k = 1, ..., n. We consider the functions

$$\chi_k = \varphi_k^{-1} : \Omega_k \to \mathbb{D} \quad , \quad g_k = \psi_k \circ f = f_k \circ \chi_k : \Omega_k \to \mathbb{C} \, .$$

If $\alpha_k \neq 1$ then, by (2.7), we have in Ω_k that

$$Sf = S(\psi_k^{-1} \circ g_k) = \frac{1 - \alpha_k^2}{2} \left(\frac{g'_k}{g_k}\right)^2 + Sg_k, \qquad (2.16)$$

where $Sg_k = (\chi'_k)^2 (Sf_k) \circ \chi_k + S\chi_k$ has bounded integral over $\{|z| = r\} \cap \partial \Omega_k$ for r near to 1 because $Sf_k \in H^1$ by (2.6).

We see from (2.3) and (2.9) that $\partial f_k(\mathbb{D})$ belongs to the class C^{2,β_k} , where $\beta_k = 2\alpha_k - 1 > 0$ if $\alpha_k < 1$ and β_k is any number with $0 < \beta_k < 1$ if $\alpha_k > 1$. Hence f''_k satisfies a Hölder condition with exponent $\beta_k = 2\alpha_k - 1 > 0$ by the Kellog-Warschawski theorem [Po92, Thm.3.6]. Since χ_k is conformal near z_k , we conclude that g_k has an expansion of the form

$$g_k(z) = d_k(z - z_k) + c_k(z - z_k)^2 + O((z - z_k)^{2 + \beta_k}), \ z \to z_k,$$
(2.17)

where $d_k \neq 0$. By the Hölder continuity above, corresponding differentiated expansions hold also for g'_k and g''_k , and it follows that

$$1 + z \frac{g_k''(z)}{g_k'(z)} \to 1 + \frac{2c_k z_k}{d_k} , z \to z_k ,$$

and because the curvature of C_k is zero at 0 we conclude that

$$\operatorname{Re}\{1 + \frac{2c_k z_k}{d_k}\} = 0.$$

Thus

$$1 + \frac{2c_k z_k}{d_k} = 2ie_k , e_k \in \mathbb{R}.$$

Further calculations give that

$$\left(z\frac{g'_k}{g_k}\right)^2 = \frac{z^2}{(z-z_k)^2} + \frac{2c_k}{d_k}\frac{z^2}{z-z_k} + O((z-z_k)^{\beta_k-1})$$
$$= \frac{z_k z}{(z-z_k)^2} + ie_k\frac{z+z_k}{z-z_k} + O((z-z_k)^{\beta_k-1}).$$
(2.18)

It follows from (2.16) that

$$z^{2}Sf(z) - \frac{1 - \alpha_{k}^{2}}{2} \frac{z_{k}z}{(z - z_{k})^{2}} - ir_{k} \frac{z + z_{k}}{z - z_{k}} - z^{2}Sg_{k}(z) = O((z - z_{k})^{\beta_{k}-1}),$$

for some $r_k \in \mathbb{R}$, which implies that

$$z^{2}Sf(z) - \frac{1 - \alpha_{k}^{2}}{2} \frac{z_{k}z}{(z - z_{k})^{2}} - ir_{k} \frac{z + z_{k}}{z - z_{k}}$$

has bounded integral over $\{|z| = r\} \cap \partial \Omega_k$ for r close to 1 because $\beta_k > 0$. Observe that if |z| = 1, then $\frac{\sqrt{z_k z}}{z - z_k} \in i\mathbb{R}$ and hence

$$\operatorname{Im}\left\{\frac{1-\alpha_k^2}{2}\frac{z_k z}{(z-z_k)^2} + ir_k \frac{z+z_k}{z-z_k}\right\} = 0 , \ z \in \partial \mathbb{D} .$$
(2.19)

Suppose now that $\alpha_k = 1$. By (2.14), we conclude once more that the function f_k satisfies a Hölder condition for some (any) exponent $\beta_k > 0$, and as before, the function g_k admits the expansion (2.17). From equation (2.15) we have that

$$Sf = S(\psi_k^{-1} \circ g_k) = -\frac{2ib_k}{g_k}(g'_k)^2 + Sg_k + O(\log(z - z_k)) , z \to z_k ,$$

and hence

$$z^{2}Sf(z) = ir_{k}\frac{z+z_{k}}{z-z_{k}} + z^{2}Sg_{k}(z) + O(\log(z-z_{k}))$$

where we have set $r_k = -b_k z_k g'_k(z_k)$, which is real because the tangent to C_k at $0 = g_k(z_k)$ is vertical. As before, for r close to 1 Sg_k has bounded integral over $\{|z| = r\} \cap \partial \Omega_k$, therefore so does

$$z^2 Sf(z) - ir_k \frac{z + z_k}{z - z_k}$$

If $z \in \partial \mathbb{D}$ then (2.19) holds with $\alpha_k = 1$. We define the function R(z) by

$$R(z) = \sum_{k=1}^{n} \left(\frac{1 - \alpha_k^2}{2} \frac{z_k z}{(z - z_k)^2} + ir_k \frac{z + z_k}{z - z_k} \right) \,. \tag{2.20}$$

By construction, if r is near to 1 then $z^2 Sf(z) - R(z)$ has bounded integral over $\{|z| = r\} \cap \partial \Omega_k$ for each k, and since $C \setminus \bigcup \partial \Omega_k$ belongs to $C^{3,\delta}$ in $\partial \mathbb{D} \setminus \{z_1, \dots, z_n\}$, we conclude that $z^2 Sf(z) - R(z)$ is in H^1 . It follows that for $z \in \mathbb{D}$

$$z^{2}Sf(z) - R(z) = \frac{1}{2\pi i} \int_{|\zeta|=1} \frac{\zeta+z}{\zeta-z} \operatorname{Im} \left\{ \zeta^{2}Sf(\zeta) - R(\zeta) \right\} |d\zeta| \, .$$

This implies (2.1) because $\text{Im}\{R(\zeta)\} = 0$ by (2.19) and (2.20).

Acknowledgment: We thank the referee for his suggestions and careful reading of the manuscript.

References

[Ne52] Z. Nehari, Conformal Mapping, McGraw-Hill, New York, 1952.

[Po92] Ch. Pommerenke, Boundary Behavior of Conformal Maps, Springer-Verlag, Berlin, 1992.

[Wi65] N.M. Wigley, Development of the mapping function at a corner, Pacific J. Math. 15 (1965), 1435-1461.

Facultad de Matematicas, P. Universidad Catolica de Chile, Casilla 306, Santiago 22, CHILE, mchuaqui@mat.puc.cl

Technische Universität Berlin, Fachbereich Mathematik, 10623 Berlin, GERMANY, pommeren@math.TU-Berlin.de