An integral representation formula of the Schwarzian derivative

Martin Chuaqui* Christian Pommerenke

Abstract

Let f be a conformal map of the unit disk \mathbb{D} onto a domain bounded by a curve C, which is of class $C^{3, \delta}$, except for a finite number of corners. In this paper we derive a representation formula of the Schwarzian derivative $S f$, expressed in terms of the integral of the arclength derivative of the curvature of C and a sum of polar terms corresponding to the vertices.

1. Introduction

Let f be a locally univalent analytic map defined on some open set, and let

$$
S f(z)=\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}
$$

be its Schwarzian derivative. The role of this operator in connection with the global univalence of f in the domain and quaisconformal extensions to \mathbb{C} has been studied extensively and is well known. On the other hand, at a local scale, the Schwarzian derivative determines the way the mapping f distorts geodesic curvature, in particular, to what extent curves of constant curvature are preserved under the mapping. To be precise, let $z=z(t)$ be an arclength parametrized curve contained in the domain of f, and let $w(t)=f(z(t))$ be the image curve. The curvatures are given by $k(t)=\frac{d}{d t} \arg \left\{z^{\prime}(t)\right\}$ and

$$
\begin{equation*}
\kappa(s)=\frac{d}{d s} \arg \left\{w^{\prime}(t)\right\}=\frac{1}{\left|f^{\prime}\right|}\left(\operatorname{Im}\left\{\left(\frac{f^{\prime \prime}}{f^{\prime}}\right) z^{\prime}\right\}+k(t)\right) . \tag{1.1}
\end{equation*}
$$

Here s denotes the arclength parameter of the image curve and all derivatives of f are evaluated at $z(t)$. Further differentiation yields the important relation

$$
\begin{equation*}
\frac{d \kappa}{d s}=\frac{1}{\left|f^{\prime}\right|^{2}}\left(\operatorname{Im}\left\{(S f)\left(z^{\prime}\right)^{2}\right\}+\frac{d k}{d t}\right) \tag{1.2}
\end{equation*}
$$

[^0]It follows, for example, that a given circle or line γ will be mapped onto a curve of the same type provided the quantity $(S f)\left(z^{\prime}\right)^{2}$ is real along γ.

Let f be a conformal map of the unit disc \mathbb{D} onto the Jordan domain Ω. First let $\partial \Omega$ be very smooth and let $z(t)=e^{i t}$. From (1.1) and (1.2) we obtain that

$$
\kappa=\frac{1}{\left|f^{\prime}\right|} \operatorname{Re}\left\{1+z \frac{f^{\prime \prime}}{f^{\prime}}\right\},
$$

and

$$
\frac{d \kappa}{d s}=-\frac{1}{\left|f^{\prime}\right|^{2}} \operatorname{Im}\left\{z^{2} S f\right\}
$$

It follows then from Schwarz's formula that

$$
\begin{equation*}
z^{2} S f(z)=\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{e^{i t}+z}{e^{i t}-z}\left|f^{\prime}\left(e^{i t}\right)\right|^{2}\left(\frac{d \kappa}{d s}\right) d t \tag{1.3}
\end{equation*}
$$

One deduces, for instance, that a conformal mapping of the disc onto a domain bounded by a circle must be a Möbius transformation. On the other hand, if $\partial \Omega$ consists of circular arcs forming interior angles $\alpha_{k} \pi$ at the vertices $w_{k}=f\left(z_{k}\right)$ then [Ne52, p. 201]

$$
z^{2} S f(z)=\sum_{k=1}^{n}\left(\frac{1-\alpha_{k}^{2}}{2} \frac{z z_{k}}{\left(z-z_{k}\right)^{2}}+i r_{k} \frac{z+z_{k}}{z-z_{k}}\right)+c
$$

with real r_{k}.
The purpose of the present paper is to derive a similar integral formula for the Schwarzian of a conformal map f onto a domain bounded by a curve that is sufficiently smooth except for a finite number of corners. As it turns out, arbitrary interior angles will not be allowed, for then f^{\prime} will fail to belong to the Hardy space H^{2}. The formula will incorporate, in addition to the integral, a sum of polar terms at the points on $\partial \mathbb{D}$ corresponding to the vertices in the image.

2. Main Result

Let C be a Jordan curve in \mathbb{C}, let $w_{1}, \ldots, w_{n}=w_{0}$ be points on C in cyclic order, and let Γ_{k} be the closed arc between w_{k-1} and $w_{k}, k=1, \ldots, n$. We will assume that the arcs Γ_{k} are $C^{3, \delta}$ for some $\delta>0$, and that the curve C forms at w_{k} an interior angle of $\pi \alpha_{k}, 0 \leq \alpha_{k} \leq 2$. Then the geodesic curvature $\kappa(s)$ and its arclength derivative $\kappa^{\prime}(s)$ exist on each open arc and have one-sided limits at each vertex. Let f be a conformal map of \mathbb{D} onto Ω, the interior domain bounded by C, and let $z_{k}=f^{-1}\left(w_{k}\right)$. It follows from [Po92, Thm.3.6] that $f^{\prime \prime \prime}(z)$ is continuous and $f^{\prime}(z) \neq 0$ for $z \in \overline{\mathbb{D}} \backslash\left\{z_{1}, \ldots, z_{n}\right\}$.

For $z(t)=e^{i t}$ let $s(t)$ be again the arclength parameter on C, and write

$$
\lambda(z)=\frac{d \kappa}{d s}(s(t))=\frac{1}{\left|f^{\prime}(z)\right|} \frac{d \kappa}{d t} .
$$

Then $\lambda(z)$ is continuous and bounded on $\partial \mathbb{D} \backslash\left\{z_{1}, \ldots, z_{n}\right\}$.

Theorem: If $\frac{1}{2}<\alpha_{k} \leq 2$ for $k=1, \ldots, n$ then, for $z \in \mathbb{D}$

$$
\begin{equation*}
z^{2} S f(z)=\sum_{k=1}^{n}\left(\frac{1-\alpha_{k}^{2}}{2} \frac{z_{k} z}{\left(z-z_{k}\right)^{2}}+i r_{k} \frac{z+z_{k}}{z-z_{k}}\right)+\frac{1}{2 \pi i} \int_{|\zeta|=1} \frac{\zeta+z}{\zeta-z}\left|f^{\prime}(\zeta)\right|^{2} \lambda(\zeta)|d \zeta| \tag{2.1}
\end{equation*}
$$

Here $f^{\prime} \in H^{2}$ and $r_{k} \in \mathbb{R}$.
Remark: If there is some $\alpha_{k} \leq \frac{1}{2}$ then $f^{\prime} \notin H^{2}$ and the integral will not converge unless $\lambda(z)$ tends to zero sufficiently rapidly as $z \rightarrow z_{k}$. It is also interesting to observe that if all the arcs Γ_{k} are pieces of circles or straight lines, then $S f(z)$ is meromorphic with poles at the points z_{k}.

In the proof we will use the following Phragmen-Lindelöf type lemma:
Lemma: Let $h: \mathbb{D} \rightarrow \mathbb{C}$ be analytic and continuous on $\overline{\mathbb{D}} \backslash\{\zeta\}$, for some $\zeta \in \partial \mathbb{D}$. Suppose that for constants a, b, M_{1}, M_{2} :
(i) $|h(z)| \leq \frac{M_{1}}{(1-|z|)^{a}}, z \in \mathbb{D}$,
(ii) $\quad|h(z)| \leq \frac{M_{2}}{|z-\zeta|^{b}},|z|=1, z \neq \zeta$.

Then

$$
|h(z)| \leq \frac{M_{2}}{|z-\zeta|^{b}}, z \in \mathbb{D}
$$

Proof: Without loss of generality we may assume that $\zeta=1$. Let $\epsilon>0$ be fixed and consider the function $g(z)=(z-\zeta)^{b} h(z) q(z)$, where

$$
q(z)=\exp \left(-\epsilon \sqrt{\frac{1+z}{1-z}}\right)
$$

 $\lim \sup _{z \rightarrow 1}|g(z)|=0$ because of part (i) and the choice of the function $q(z)$. We conclude from the classical Lindelöf maximum principle that $|g(z)| \leq M_{2}$ for all $z \in \mathbb{D}$. The lemma now follows by letting $\epsilon \rightarrow 0$.
Proof of the Theorem: The proof is long and will be divided into several parts. First we will determine the asymptotic behavior of some functions related to f near the points z_{k}. This was done in greater generality by Wigley [Wi65]. However, we need more detailed information about the coefficients.
Part 1. Let k be fixed and suppose $\alpha_{k} \neq 1,2$. Then the circles of curvature of Γ_{k} and Γ_{k+1} at w_{k} have a second point of intersection, w_{k}^{*}. Let us assume first that $w_{k}^{*} \neq \infty$; the other case is simpler. Let Ω_{k} be a subdomain of Ω such that $\partial \Omega_{k}$ consists of arcs of Γ_{k} and Γ_{k+1} containing w_{k}, and a third arc of class $C^{3, \delta}$ of high contact with Γ_{k} and Γ_{k+1}. We may assume also that $w_{k}^{*} \notin \overline{\Omega_{k}}$, and that Ω_{k} is limited to a small neighborhood of w_{k}.

The function

$$
\begin{equation*}
\psi_{k}(w)=\left(a_{k} \frac{w-w_{k}}{w-w_{k}^{*}}\right)^{\frac{1}{\alpha_{k}}} \tag{2.2}
\end{equation*}
$$

is analytic and injective for $w \in \Omega_{k}$, and the image $\psi_{k}\left(\partial \Omega_{k}\right)$ is a Jordan curve. We may choose the parameter a_{k} such that the image C_{k} of $\partial \Omega_{k}$ under $\psi_{k}(w)^{\alpha_{k}}=a_{k}\left(w-w_{k}\right) /\left(w-w_{k}^{*}\right)$ has tangents in the directions $e^{ \pm i \pi \alpha_{k} / 2}$ at 0 . Because of the choice of the Möbius transformation in the definition of ψ_{k}, the curvatures of C_{k} are 0 at 0 .

If $w_{k}^{*}=\infty$ then both circles of curvature are straight lines and the one-sided curvatures of C at w_{k} are 0 . Then it suffices to consider $a_{k}\left(w-w_{k}\right)$ as the Möbius transformation in the definition (2.2) of ψ_{k}. In either case, C_{k} admits parametric representations in the form

$$
u(t)=e^{ \pm i \pi \alpha_{k} / 2} t+O\left(t^{3}\right)
$$

near the origin. It follows that

$$
u(t)^{1 / \alpha_{k}}= \pm i t^{1 / \alpha_{k}} \omega(t)
$$

where $\omega(t)=1+O\left(t^{2}\right)$. Let $\tau=t^{1 / \alpha_{k}}$, that is, $t=\tau^{\alpha_{k}}$. Then $\psi_{k}\left(\partial \Omega_{k}\right)$ near 0 can be represented as

$$
v(\tau)= \pm i \tau \omega\left(\tau^{\alpha_{k}}\right)
$$

and therefore

$$
\begin{gather*}
\pm i v^{\prime}(\tau)=\omega\left(\tau^{\alpha_{k}}\right)+\alpha_{k} \tau^{\alpha_{k}} \omega^{\prime}\left(\tau^{\alpha_{k}}\right)=1+O\left(\tau^{2 \alpha_{k}}\right) \\
\pm i v^{\prime \prime}(\tau)=\alpha_{k}\left(1+\alpha_{k}\right) \tau^{\alpha_{k}-1} \omega^{\prime}\left(\tau^{\alpha_{k}}\right)+\alpha_{k}^{2} \tau^{2 \alpha_{k}-1} \omega^{\prime \prime}\left(\tau^{\alpha_{k}}\right)=O\left(\tau^{2 \alpha_{k}-1}\right) \tag{2.3}
\end{gather*}
$$

One further differentiation for $\tau \neq 0$ shows that

$$
\begin{equation*}
S v(\tau)=O\left(\tau^{2 \alpha_{k}-2}\right)+O\left(\tau^{4 \alpha_{k}-2}\right)=O\left(\tau^{2 \alpha_{k}-2}\right), \tau \rightarrow 0 \tag{2.4}
\end{equation*}
$$

Let φ_{k} be a conformal mapping of \mathbb{D} onto $f^{-1}\left(\Omega_{k}\right) \subset \mathbb{D}$ such that $\varphi_{k}(1)=z_{k}$. Then

$$
\begin{equation*}
f_{k}=\psi_{k} \circ f \circ \varphi_{k} \tag{2.5}
\end{equation*}
$$

is a conformal mapping of \mathbb{D} onto $\psi_{k}(\Omega)$. We want to apply the lemma to $h(z)=S f_{k}(z)$ with $\zeta=1$. Because $\partial f_{k}(\mathbb{D})$ is of class $C^{3, \delta}$ except at $f_{k}(1)$, it follows that $h(z)$ is continuous on $\overline{\mathbb{D}} \backslash\{1\}$. Furthermore, in light of the univalence of $f_{k}, h(z)$ satisfies condition (i) of the lemma with $M_{1}=6$ and $a=2$. On the other hand, the mapping $f_{k} \circ \varphi_{k}^{-1}$ along the boundary $\partial f^{-1}\left(\Omega_{k}\right)$ is of class $C^{3, \delta}$, except at z_{k}. It follows that $S\left(f_{k} \circ \varphi_{k}^{-1}\right)$ is continuous on $\partial f^{-1}\left(\Omega_{k}\right) \backslash\left\{z_{k}\right\}$, and equation (2.4) implies that near $z_{k},\left|S\left(f_{k} \circ \varphi_{k}^{-1}\right)(z)\right|$ is $O\left(\left|z-z_{k}\right|^{2 \alpha_{k}-2}\right)$. Here we have used that $\tau \sim\left|z-z_{k}\right|$. Since, by the reflection principle, the mapping φ_{k} is analytic at $1=\varphi_{k}^{-1}\left(z_{k}\right)$, it follows that $h(z)=S f_{k}(z)$ satisfies condition (ii) of the lemma for some M_{2} and $b=2-2 \alpha_{k}$. Because $2-2 \alpha_{k}<1$, the conclusion of the lemma implies the key fact that

$$
\begin{equation*}
S f_{k} \in H^{1} \tag{2.6}
\end{equation*}
$$

From (2.2) we deduce that $\psi_{k}^{-1}(w)=\sigma_{k}\left(w^{\alpha_{k}}\right)$, with σ_{k} Möbius, hence

$$
\begin{equation*}
S \psi_{k}^{-1}(w)=\frac{1-\alpha_{k}^{2}}{2} \frac{1}{w^{2}} . \tag{2.7}
\end{equation*}
$$

 tangent and we now define

$$
\begin{equation*}
\psi_{k}(w)=\left(a_{k}\left(w-w_{k}\right)\right)^{\frac{1}{2}} . \tag{2.8}
\end{equation*}
$$

For a_{k} properly chosen, the image C_{k} of $\partial \Omega_{k}$ under $a_{k}\left(w-w_{k}\right)$ admits, near the origin, a representation of the form

$$
u(t)=-t+O\left(t^{2}\right)
$$

and it follows that

$$
u(t)^{\frac{1}{2}}= \pm i t^{\frac{1}{2}} \omega(t)
$$

where $\omega(t)=1+O(t)$ only. Let $\tau=t^{\frac{1}{2}}$, that is, $t=\tau^{2}$. Then C_{k} can be represented as

$$
v(\tau)= \pm i \tau \omega\left(\tau^{2}\right)
$$

and thus

$$
\begin{equation*}
\mp i v^{\prime \prime}(\tau)=4 \tau \omega^{\prime}\left(\tau^{2}\right)+4 \tau^{3} \omega^{\prime \prime}\left(\tau^{2}\right)=O(\tau) \tag{2.9}
\end{equation*}
$$

Thus $S v(\tau)$ is bounded near $\tau=0$, and we conclude in this case that $S f_{k}$ is actually bounded in \mathbb{D}. Hence (2.6) holds. Note also that (2.7) is also valid in this case.
Part 3. Suppose now that $\alpha_{k}=1$ for some k. The curve C then has a tangent at w_{k} but may have different one-sided curvatures κ^{+}, κ^{-}. We may assume that $w_{k}=0$ and that the tangent line is vertical. The curve C near 0 admits a parametrization of the form

$$
\begin{equation*}
u^{ \pm}(t)= \pm i t+\mu^{ \pm}(t) \tag{2.10}
\end{equation*}
$$

where $\mu^{ \pm}$are real valued functions of class $C^{3, \delta}$ and

$$
\begin{equation*}
\mu^{ \pm}(t)=\frac{1}{2} \kappa^{ \pm} t^{2}+O\left(t^{3}\right), t \rightarrow 0 . \tag{2.11}
\end{equation*}
$$

This time, let

$$
\psi_{k}(w)=\frac{w}{1-(i b \log w+c) w}=w+(i b \log w+c) w^{2}+O\left(w^{3} \log ^{2} w\right)
$$

where $b=b_{k}, c=c_{k}$ are real constants to be chosen later. Then

$$
\psi_{k}\left(u^{ \pm}(t)\right)= \pm i t+O\left(t^{2} \log t\right), t \rightarrow 0
$$

and

$$
\begin{gather*}
\frac{d}{d t} \psi_{k}\left(u^{ \pm}(t)\right)=\frac{d u^{ \pm}}{d t}+\left(2 i b \log u^{ \pm}+2 c+i b\right) u^{ \pm} \frac{d u^{ \pm}}{d t} \\
\frac{d^{2}}{d t^{2}} \psi_{k}\left(u^{ \pm}(t)\right)=\frac{d^{2} u^{ \pm}}{d t^{2}}+\left(2 i b \log u^{ \pm}+2 c+i b\right) u^{ \pm} \frac{d^{2} u^{ \pm}}{d t^{2}}+\left(2 i b \log u^{ \pm}+2 c+3 i b\right)\left(\frac{d u^{ \pm}}{d t}\right)^{2} . \tag{2.12}
\end{gather*}
$$

It follows from (2.10) and (2.11) that, as $t \rightarrow 0$,

$$
\frac{d u^{ \pm}}{d t}= \pm i+\frac{d \mu^{ \pm}}{d t}= \pm i+\kappa^{ \pm} t+O\left(t^{2}\right)
$$

and

$$
\frac{d^{2} u^{ \pm}}{d t^{2}}=\frac{d^{2} \mu^{ \pm}}{d t^{2}}=\kappa^{ \pm}+O(t)
$$

We therefore deduce from (2.12) that

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} \operatorname{Re}\left\{\psi_{k}\left(u^{ \pm}(t)\right)\right\}=\kappa^{ \pm} \mp \pi b-2 c+O(t \log t) \tag{2.13}
\end{equation*}
$$

because $\log u^{ \pm}(t)= \pm i \frac{\pi}{2}+\log \left(t \mp i \mu^{ \pm}(t)\right)$. We may choose now b, c such that $\kappa^{+}-\pi b-2 c=$ $\kappa^{-}+\pi b-2 c=0$. With this, the parameter τ is defined by

$$
\tau=\operatorname{Im}\left\{\psi_{k}\left(u^{ \pm}(t)\right)\right\},-\tau_{0}<\tau<\tau_{0}
$$

Then $\tau= \pm t+O\left(t^{2} \log t\right)$, hence $t=|\tau|+O\left(\tau^{2} \log \tau\right)$ as $\tau \rightarrow 0$. With this, (2.13) and the choice of b, c, we obtain that

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} \operatorname{Re}\left\{\psi_{k}\left(u^{ \pm}(\tau)\right)\right\}=O(\tau \log \tau), \tau \rightarrow 0 \tag{2.14}
\end{equation*}
$$

Thus the curve C_{k} has vertical tangent and zero curvature at the origin, and admits a parametrization $v(\tau)$ with the property that $S v(\tau)=O(\log \tau)$ as $\tau \rightarrow 0$. Once more we conclude that $S f_{k}$ satisfies (2.6).

As in (2.7), we will need $S \psi_{k}^{-1}$ in Part 4 of this proof. Let

$$
h(w)=\frac{1}{\psi_{k}(w)}=\frac{1}{w}-i b \log w+c,
$$

so that $h^{\prime}(w)=-1 / w^{2}-i b / w$ and

$$
\frac{h^{\prime \prime}}{h^{\prime}}(w)=-\frac{1}{w} \frac{2+i b w}{1+i b w}=-\frac{2}{w}+i b+O(w)
$$

hence

$$
S h(w)=S \psi_{k}(w)=\frac{2 i b}{w}+O(1) .
$$

Since $\psi_{k}^{\prime}(w)^{2}\left(S \psi_{k}^{-1}\right)\left(\psi_{k}(w)\right)+S \psi_{k}(w)=0$ we obtain

$$
\begin{gathered}
\left(S \psi_{k}^{-1}\right)\left(\psi_{k}(w)\right)=-\frac{2 i b}{w} \frac{\left(\frac{1}{w}-i b \log w+c\right)^{4}}{\left(-\frac{1}{w^{2}}-\frac{i b}{w}\right)^{2}} \\
=-\frac{2 i b}{w}\left(1-4 i b w \log w+(4 c-2 i b) w+O\left(w^{2} \log ^{2} w\right)\right) \\
=-2 i b\left(\frac{1}{\psi_{k}(w)}-3 i b \log \psi_{k}(w)+O(1)\right) .
\end{gathered}
$$

With this,

$$
\begin{equation*}
S \psi_{k}^{-1}(w)=-\frac{2 i b}{w}+O(\log w) \tag{2.15}
\end{equation*}
$$

Part 4. Finally, we put together the various individual cases for $k=1, \ldots, n$. We consider the functions

$$
\chi_{k}=\varphi_{k}^{-1}: \Omega_{k} \rightarrow \mathbb{D} \quad, \quad g_{k}=\psi_{k} \circ f=f_{k} \circ \chi_{k}: \Omega_{k} \rightarrow \mathbb{C} .
$$

If $\alpha_{k} \neq 1$ then, by (2.7), we have in Ω_{k} that

$$
\begin{equation*}
S f=S\left(\psi_{k}^{-1} \circ g_{k}\right)=\frac{1-\alpha_{k}^{2}}{2}\left(\frac{g_{k}^{\prime}}{g_{k}}\right)^{2}+S g_{k} \tag{2.16}
\end{equation*}
$$

where $S g_{k}=\left(\chi_{k}^{\prime}\right)^{2}\left(S f_{k}\right) \circ \chi_{k}+S \chi_{k}$ has bounded integral over $\{|z|=r\} \cap \partial \Omega_{k}$ for r near to 1 because $S f_{k} \in H^{1}$ by (2.6).

We see from (2.3) and (2.9) that $\partial f_{k}(\mathbb{D})$ belongs to the class $C^{2, \beta_{k}}$, where $\beta_{k}=2 \alpha_{k}-1>0$ if $\alpha_{k}<1$ and β_{k} is any number with $0<\beta_{k}<1$ if $\alpha_{k}>1$. Hence $f_{k}^{\prime \prime}$ satisfies a Hölder condition with exponent $\beta_{k}=2 \alpha_{k}-1>0$ by the Kellog-Warschawski theorem [Po92, Thm.3.6]. Since χ_{k} is conformal near z_{k}, we conclude that g_{k} has an expansion of the form

$$
\begin{equation*}
g_{k}(z)=d_{k}\left(z-z_{k}\right)+c_{k}\left(z-z_{k}\right)^{2}+O\left(\left(z-z_{k}\right)^{2+\beta_{k}}\right), z \rightarrow z_{k} \tag{2.17}
\end{equation*}
$$

where $d_{k} \neq 0$. By the Hölder continuity above, corresponding differentiated expansions hold also for g_{k}^{\prime} and $g_{k}^{\prime \prime}$, and it follows that

$$
1+z \frac{g_{k}^{\prime \prime}(z)}{g_{k}^{\prime}(z)} \rightarrow 1+\frac{2 c_{k} z_{k}}{d_{k}}, z \rightarrow z_{k}
$$

and because the curvature of C_{k} is zero at 0 we conclude that

$$
\operatorname{Re}\left\{1+\frac{2 c_{k} z_{k}}{d_{k}}\right\}=0
$$

Thus

$$
1+\frac{2 c_{k} z_{k}}{d_{k}}=2 i e_{k}, e_{k} \in \mathbb{R}
$$

Further calculations give that

$$
\begin{align*}
& \left(z \frac{g_{k}^{\prime}}{g_{k}}\right)^{2}=\frac{z^{2}}{\left(z-z_{k}\right)^{2}}+\frac{2 c_{k}}{d_{k}} \frac{z^{2}}{z-z_{k}}+O\left(\left(z-z_{k}\right)^{\beta_{k}-1}\right) \\
& \quad=\frac{z_{k} z}{\left(z-z_{k}\right)^{2}}+i e_{k} \frac{z+z_{k}}{z-z_{k}}+O\left(\left(z-z_{k}\right)^{\beta_{k}-1}\right) \tag{2.18}
\end{align*}
$$

It follows from (2.16) that

$$
z^{2} S f(z)-\frac{1-\alpha_{k}^{2}}{2} \frac{z_{k} z}{\left(z-z_{k}\right)^{2}}-i r_{k} \frac{z+z_{k}}{z-z_{k}}-z^{2} S g_{k}(z)=O\left(\left(z-z_{k}\right)^{\beta_{k}-1}\right)
$$

for some $r_{k} \in \mathbb{R}$, which implies that

$$
z^{2} S f(z)-\frac{1-\alpha_{k}^{2}}{2} \frac{z_{k} z}{\left(z-z_{k}\right)^{2}}-i r_{k} \frac{z+z_{k}}{z-z_{k}}
$$

has bounded integral over $\{|z|=r\} \cap \partial \Omega_{k}$ for r close to 1 because $\beta_{k}>0$. Observe that if $|z|=1$, then $\frac{\sqrt{z_{k} z}}{z-z_{k}} \in i \mathbb{R}$ and hence

$$
\begin{equation*}
\operatorname{Im}\left\{\frac{1-\alpha_{k}^{2}}{2} \frac{z_{k} z}{\left(z-z_{k}\right)^{2}}+i r_{k} \frac{z+z_{k}}{z-z_{k}}\right\}=0, z \in \partial \mathbb{D} \tag{2.19}
\end{equation*}
$$

Suppose now that $\alpha_{k}=1$. By (2.14), we conclude once more that the function f_{k} satisfies a Hölder condition for some (any) exponent $\beta_{k}>0$, and as before, the function g_{k} admits the expansion (2.17). From equation (2.15) we have that

$$
S f=S\left(\psi_{k}^{-1} \circ g_{k}\right)=-\frac{2 i b_{k}}{g_{k}}\left(g_{k}^{\prime}\right)^{2}+S g_{k}+O\left(\log \left(z-z_{k}\right)\right), z \rightarrow z_{k}
$$

and hence

$$
z^{2} S f(z)=i r_{k} \frac{z+z_{k}}{z-z_{k}}+z^{2} S g_{k}(z)+O\left(\log \left(z-z_{k}\right)\right)
$$

where we have set $r_{k}=-b_{k} z_{k} g_{k}^{\prime}\left(z_{k}\right)$, which is real because the tangent to C_{k} at $0=g_{k}\left(z_{k}\right)$ is vertical. As before, for r close to $1 S g_{k}$ has bounded integral over $\{|z|=r\} \cap \partial \Omega_{k}$, therefore so does

$$
z^{2} S f(z)-i r_{k} \frac{z+z_{k}}{z-z_{k}} .
$$

If $z \in \partial \mathbb{D}$ then (2.19) holds with $\alpha_{k}=1$. We define the function $R(z)$ by

$$
\begin{equation*}
R(z)=\sum_{k=1}^{n}\left(\frac{1-\alpha_{k}^{2}}{2} \frac{z_{k} z}{\left(z-z_{k}\right)^{2}}+i r_{k} \frac{z+z_{k}}{z-z_{k}}\right) \tag{2.20}
\end{equation*}
$$

By construction, if r is near to 1 then $z^{2} S f(z)-R(z)$ has bounded integral over $\{|z|=$ $r\} \cap \partial \Omega_{k}$ for each k, and since $C \backslash \cup \partial \Omega_{k}$ belongs to $C^{3, \delta}$ in $\partial \mathbb{D} \backslash\left\{z_{1}, \cdots, z_{n}\right\}$, we conclude that $z^{2} S f(z)-R(z)$ is in H^{1}. It follows that for $z \in \mathbb{D}$

$$
z^{2} S f(z)-R(z)=\frac{1}{2 \pi i} \int_{|\zeta|=1} \frac{\zeta+z}{\zeta-z} \operatorname{Im}\left\{\zeta^{2} S f(\zeta)-R(\zeta)\right\}|d \zeta|
$$

This implies (2.1) because $\operatorname{Im}\{R(\zeta)\}=0$ by (2.19) and (2.20).
Acknowledgment: We thank the referee for his suggestions and careful reading of the manuscript.

References

[Ne52] Z. Nehari, Conformal Mapping, McGraw-Hill, New York, 1952.
[Po92] Ch. Pommerenke, Boundary Behavior of Conformal Maps, Springer-Verlag, Berlin, 1992.
[Wi65] N.M. Wigley, Development of the mapping function at a corner, Pacific J. Math. 15 (1965), 1435-1461.

Facultad de Matematicas, P. Universidad Catolica de Chile, Casilla 306, Santiago 22, CHILE, mchuaqui@mat.puc.cl
Technische Universität Berlin, Fachbereich Mathematik, 10623 Berlin, GERMANY, pommeren@math.TU-Berlin.de

[^0]: *The author was partially supported by Fondecyt Grant \# 1000629.
 Key words: Schwarzian derivative, curvature, smooth curve, corners. 2000 AMS Subject Classification \#: Primary 30E20, Secondary 30C20, 30C35.

